Created by Ahmad Syahroni
we know that log (a x b)=log a + log b
then,the problem is in proving that log (a x b)=log a + log b
well,
let log a=n and log b=m
because of log a=log10 a and log b=log10 b
log10 = 1
log a=n log b=m
a=10n ..........(1) b=10m ............(2)
log (a x b)=log (10n x 10m)
=log 10n+m
=(n+m) log 10
=(n+m)
=log a + log b (it was proved)
then why log 10n+m=(n+m) log 10 ?
or why log 10n=n log 10 ?
because log 10n =log (10x10x10x10x........x10) as much as n
=(log 10 + log 10 + log 10 +..........+ log 10) as much as n
=n log 10
then the problem is to prove log (a x b)=log a + log b we use the log 10n+m=(n+m) log 10, but to prove log 10n+m=(n+m) log 10, we use log (a x b)=log a + log b
so,which is the first formula?
Senin, November 30, 2009
Duluan Mana?
Langganan:
Posting Komentar (Atom)
0 comments:
Posting Komentar